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[1] As most variables describing the state of the surface are not directly observable, we
have to use land surface models in order to reconstruct an estimate of their evolution.
These large-scale land surface models often require high-quality forcing data with a
subdiurnal sampling. Building these data sets is a major challenge but an essential step for
estimating the land surface water budget, which is a crucial part of climate change
prediction. To study the interannual variability of surface conditions over the last half
century, we have built a 53-year forcing data set, named NCC. NCC has a 6-hourly time
step from 1948 to 2000 and a spatial resolution of 1� � 1�. It is based on the National
Centers for Environmental Prediction/National Center for Atmospheric Research
reanalysis project and a number of independent in situ observations. In this study we show
the adjustments which need to be applied to the reanalysis and how they impact the
simulated continental water balance. The model outputs are validated with the observed
discharges of the world’s 10 largest rivers to estimate the combined errors of the forcing
data and the land surface model. The seasonal and interannual variations of these
discharges are used for this validation. Five numerical experiments have been carried
out. They used the forcing data sets obtained after each step of data adjustment and the
forcing of the Global Soil Wetness Project 2 as inputs for the Organizing Carbon and
Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The quality of
forcing data is improved after each adjustment. The precipitation correction gives the most
important improvement in the simulated river discharges, while the temperature correction
has a significant effect only at high latitudes. The radiation correction also improves
the forcing quality, especially in term of discharge amplitude. The NCC forcing data set
can be used to study the water budget over many areas and catchment basins that have not
been yet analyzed in this study. With its period of 53 years, NCC can also be used to
evaluate the trends of terrestrial water storage in particular regions.
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1. Introduction

[2] Land surface models (LSMs) were initially developed
for coupling to general circulation models (GCMs). In the
last few years, the range of complexity among the land
surface parameterizations has grown significantly. To
improve our understanding and parameterizations of land
surface processes, and to eliminate some biases that can be
generated by the GCMs, the LSMs have been applied in an
off-line mode. To be used in this stand-alone mode, a high
quality prescribed atmospheric forcing data with a subdiurnal
sampling is required. Building these data sets is a major
challenge but an essential step for estimating the land
surface water budget.
[3] Up to present, there have been several attempts to

produce atmospheric forcing data sets for use in the land
surface modeling community. Meeson et al. [1995] pro-
duced the International Satellite Land surface Climatology

Project (ISLSCP) Initiative I data set for 1987–1988. The
ISLSCP Initiative I data were used as an upper boundary
forcing for the LSMs in the pilot phase of the Global
Soil Wetness Project (GSWP1) [Dirmeyer et al., 1999].
Recently, in the framework of GSWP2 [Dirmeyer et al.,
2002], the Center for Ocean-Land Atmosphere Studies
(COLA) has produced the near-surface data set for ISLSCP
Initiative II [Hall et al., 2003] from the NCEP/DOE
reanalysis [Kanamitsu et al., 2002]. This data set includes
near-surface meteorology at a 3-hourly interval for the
10-year (1986–1995) and has been used to force LSMs in
GSWP2. Another forcing data set can be mentioned here
is VIC Retrospective Land Surface Data Set: 1950–2000
[Maurer et al., 2002], which is for the conterminous
United States and has a 3-hourly time step from 1950 to
2000 and a spatial resolution of 1/8 degree.
[4] All these data sets are reanalysis estimates combined

with gridded data sets from observations. Reanalysis or
retrospective analysis are the production of longterm anal-
ysis using a frozen modeling and assimilation framework
[Bengtsson and Shukla, 1988]. They are produced by
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assimilating the most current set of atmospheric observa-
tions into a global circulation model of the atmosphere.
These observations are obtained from surface station obser-
vations, radiosonde, aircraft and, in recent decades, satellite
retrievals. Both the National Centers for Environmental
Prediction (NCEP) and the European Centre for Medium-
Range Weather Forecasts (ECMWF) have produced global
reanalyses spanning from 15 to more than 50 years, and
other centers have produced additional reanalyses that are
more limited in time or space. Kalnay et al. [1996] have
shown that the reanalyses strongly reflect the biases and
errors of the model used, particularly in the flux estimates
(e.g., precipitation, radiation) and in the state variables (e.g.,
temperature, pressure) in regions that have little observa-
tional data input. The adjustment process of the reanalyses
by global observationally based data sets is thus necessary
in building a reliable meteorological data set to force LSMs.
[5] LSM simulations allow us to estimate the global land

surface water and energy cycles. However, the period of
actual available global forcing data sets (e.g., the period of
ISLSCP-I and ISLSCP-II is 1987–1988 and 1986–1995,
respectively) cannot be compared with remote sensing data,
and it is too short for the detection and analysis of trends,
such as those associated with global warming. A longer
period will allow for a better study of interannual land
surface climate variability, and also for application and
further development of the methods of calibration, evalua-
tion and validation of LSMs with in situ and remote sensing
data.
[6] The following study takes place in this context and

aims at building an atmospheric forcing data sets for LSMs.
We began from the 53-year (1948–2000) pure reanalysis
products of NCEP/NCAR [Kistler et al., 2001] then used
the observationally based data of the Climate Research Unit
(CRU) from University of East Anglia [New et al., 1999,
2000] and the Surface Radiation Budget (SRB) data pro-
duced at NASA Langley Research Center to correct the
reanalysis products. The correction process is done with the
same methods as those used to build GSWP2 near-surface
meteorology data sets [Dirmeyer et al., 2002; Zhao and
Dirmeyer, 2003]. The new forcing data set is named NCC
(NCEP/NCAR Corrected by CRU). NCC is a 6-hourly
forcing data with a spatial resolution of 1� for the period
of 1948–2000. The main reason for us to choose CRU data
to correct reanalysis products is that CRU is the only
available observationally based data over this long period.
[7] Our goal in this study is to construct and validate our

new 53-year atmospheric forcing data sets NCC using the
Organizing Carbon and Hydrology in Dynamic Ecosystems
(ORCHIDEE) land surface model [Verant et al., 2004;
Krinner et al., 2005]. We show the importance of the

corrections applied to the reanalysis and how these correc-
tions impact the simulated continental water budget.
[8] In section 2, the construction of the NCC data will be

described. The ORCHIDEE LSM and experiments will be
briefly presented in section 3. Section 4 will focus on the
validation of NCC data. Section 5 is a comparison using
ORCHIDEE of the NCC and GSWP2 forcing data sets over
the common period. Finally, conclusions will be presented
in section 6.

2. NCC Data Construction

[9] The input data for LSMs are generally divided into
three categories: soils data (fixed in time), vegetation data
(some fixed and some monthly varying) and meteorological
data. The soil and vegetation data are parameter data sets
that are used to specify characteristics of the land surface.
The meteorological data provide the forcing at the upper
boundary of the land surface.
[10] In this section, we aim to construct a new 53-year

meteorological data for LSMs. The variables in the meteo-
rological data (Table 1) are divided into two types: state
variables (near-surface air temperature, specific humidity,
wind speed and surface pressure) and flux fields (radiation
and precipitation). The data construction involves two steps:
interpolation of the NCEP/NCAR Reanalysis data to a grid
of 1� � 1� and correction of reanalysis data with the
observationally based data.
[11] To facilitate the exchange of forcing data for LSMs

and the results produced by these models, the Global
Energy and Water Cycle Experiment (GEWEX) Global
Land Atmosphere System Study (GLASS) established the
Assistance for Land surface Modeling activities (ALMA,
http://www.lmd.jussieu.fr/ALMA/) convention for LSM
input and output variables. The aim is to have a data
exchange format which is stable but still general and
flexible enough to evolve with the needs of LSMs. This
should ensure that the implementation of procedures to
exchange data only needs to be done once and that future
intercomparisons of LSMs will be run more efficiently.
NCC data were thus saved using the ALMA convention.

2.1. Interpolation of the NCEP/NCAR Reanalysis Data

[12] We began with the near-surface meteorological
variables from NCEP/NCAR Global Reanalysis Products
[Kistler et al., 2001]. Reanalysis have T62 (Gaussian grid)
resolution (192 � 94 grid boxes globally) and were saved
6-hourly for the period from 1948 to present. To keep the
procedure close to the GSWP2 method, the reanalysis
data was first regridded to 1� resolution. The method used
here is the inverse distance weighted interpolation, some-
times called ‘‘Shepard’s method’’ [Shepard, 1968]. Inverse
distance weighted methods are based on the assumption
that the interpolating surface should be influenced most by
the nearby points and less by the more distant points. The
reanalysis land-sea mask and the ISLSCP land-sea mask
are used to ensure that only land points are transformed
into land points.
[13] This method of interpolation is directly applied for

near-surface wind speed at 10 m, surface incident radiation
and precipitation rate. For near-surface air temperature,
surface pressure and specific humidity, the procedure is a

Table 1. Atmospheric Forcing Variables for LSMs

Name Description Units

Tair near-surface air temperature at 2 m K
Qair near-surface specific humidity at 2 m kg kg�1

Wind near-surface wind speed at 10 m m s�1

Psurf surface pressure Pa
SWdown surface incident shortwave radiation W m�2

LWdown surface incident longwave radiation W m�2

Rainf rainfall rate kg m�2 s�1

Snowf snowfall rate kg m�2 s�1
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little different because these variables must be corrected for
differences in elevation between the reanalysis model to-
pography and the NCC topography. To interpolate temper-
ature and pressure, the key technique is to extrapolate first
these variables to sea level height using the reanalysis
topography, to regrid them to the 1� resolution and then
to calculate their new values with the NCC topography. The
vertical extrapolation needed for the two data sets uses

Tz ¼ T0 � gz ð1Þ

where T is temperature, z is height above mean sea level (T0
is thus the temperature at the sea level), and g = �@T/@z is
the environmental lapse rate. In this study, we use g =
0.65�C/100 m.

pz ¼ p0
T0 � gz

T0

� �g=gRa

ð2Þ

where p is pressure and Ra is gas constant of air (Ra =
R/mair = 287 J kg�1 K�1).
[14] The methodology for computing humidity at the

1� � 1� resolution has been chosen so that the relative
humidity remains constant with pressure and temperature
changes caused by their interpolation. The actual vapor
pressure and the saturated vapor pressure both change, but
by the same factor. Thus, to interpolate specific humidity, the
following steps are taken: (1) calculate specific humidity at
saturation qs(TNCEP, pNCEP), (2) calculate relative humidity
fNCEP = q/qs, (3) interpolate fNCEP to fNCC in using Shepard’s
method, and (4) recalculate specific humidity in the new
grid qNCC = fNCC * qs(TNCC, pNCC).

2.2. Correction of the 53-year NCEP// NCAR Data

[15] After the interpolation step, we have the new 53-year
meteorological data set on the 1� � 1� grid. This data set
is a pure reanalysis product. As discussed above, it should
be amended by combining with gridded observational data
to remove systematic errors in the reanalysis fields. The
observational data are thus required to have a high
resolution in space and cover a long period. There are
few data sets that satisfy this demand. Notable exceptions
are the monthly time step Global Precipitation Climatology
Project (GPCP) data set [Xie and Arkin, 1996; Xie et al.,
1996], the monthly 1900–1988, 2.5� � 2.5� precipitation
data set of Dai et al. [1997] (hereinafter referred to as
Dai), and the 0.5� � 0.5� daily time step data set being
developed by Piper and Stewart [1996, henceforth PS].
These products either cover relatively short periods (1970s
to present; GPCP, PS) or are coarse resolution (Dai). The
precipitation and temperature of the CRU data set [New et
al., 1999, 2000] appear to be the best choice to correct
NCEP/NCAR products. The CRU data set is a high-
resolution (0.5�) monthly product over continents only
which includes for the 1901–2000 period a gauge-only
estimate of precipitation as well as other near-surface
climatic variables.
[16] Because no observationally based radiation data for

the period of 1948–present is available, the Surface Radi-
ation Budget (SRB) data produced at NASA Langley
Research Center for the period of 1983–1995 will be

applied here for a simple bias correction of the reanalysis
product.
2.2.1. Precipitation
[17] The hybridization of the reanalysis with CRU pre-

cipitation has been done in using the process proposed in
GSWP2 [Dirmeyer et al., 2002; Zhao and Dirmeyer, 2003].
Monthly CRU data are first transformed from the original
0.5� resolution to the 1� resolution of NCC. Then, the
reanalysis systematic errors are removed via a multiplicative
scaling factor based on the ratio of observed monthly
rainfall to reanalysis estimates:

P½ �Y ;M ;D;T¼
PCRU½ �M
PNCEP½ �M

PNCEP½ �Y ;M ;D;T ð3Þ

[18] To adjust the precipitation data, the value at a grid
box of the reanalysis precipitation at a given year (Y),
month (M), day (D) and 6-hourly time interval (T) is
scaled by the ratio of the monthly mean observed
precipitation to the corresponding mean value from the
reanalysis for that month. This approach avoids problems
of negative values in positive definite quantities such as
precipitation.
[19] The partition of snowfall and rainfall is calculated by

a simple function of total precipitation and near-surface air
temperature (Tair). When Tair is smaller than 273.15 K,
precipitation is assumed to be all snowfall. When Tair is
greater or equal to 273.15 K, precipitation is assumed to be
rainfall.
2.2.2. Atmospheric State Variables
[20] To make a consistent adjustment of near-surface air

temperature to the 1� � 1� grid, the CRU temperatures
were corrected for the altitude difference between the CRU
grid and the NCC grid. The monthly CRU temperature
data were aggregated from 0.5� to 1�, and then used to
hybridize the 6-hourly NCEP/NCAR reanalysis 2-m air
temperature data by correcting the differences of monthly
mean:

T½ �Y ;M ;D;T ¼ TNCEP½ �Y ;M ;D;T þ TCRU½ �M � TNCEP½ �M ð4Þ

[21] The correction of temperature will affect the
surface pressure, which depends on the temperature
(equation (2)), and will also affect the estimated saturation
specific humidity. Thus it is necessary to adjust the esti-
mates of surface pressure and specific humidity from the
reanalysis. This is done by using the equation (2) with
the temperature before and after the correction. In the new
53-year NCC atmospheric forcing data, the reanalysis wind
products have not been corrected and are used as they are.
2.2.3. Radiation
[22] To our knowledge there are no radiation data sets

over the period of 1948 to present available with a high
enough resolution in space and time to be used here for the
correction of the reanalysis. The SRB data produced at
NASA Langley Research Center for the period of 1983–
1995 which is available at a resolution of 1� � 1� in space
and 3 hours in time seems to be the best choice and is thus
used here for a simple bias correction of the reanalysis
product. Thus NCC uses the same observational data as
GSWP2 for the hybridization of radiation.
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[23] The equation for generating a bias corrected down-
ward shortwave radiation is

SW½ �Y ;M ;D;T ¼
SWSRB½ �M
SWNCEP½ �M

SWNCEP½ �Y ;M ;D;T ð5Þ

where SW is surface incident shortwave radiation. The
index M means the mean monthly value of SW for the
period of 1983–1995. The same calculation is applied for
downward long-wave data.

3. Model Description and Experimental Design

3.1. Brief Description of ORCHIDEE LSM and the
Runoff Routing Scheme

[24] The description of ORCHIDEE is given by Verant et
al [2004] and Krinner et al. [2005], but the key items are
briefly presented here. ORCHIDEE is the new LSM of the
Pierre-Simon Laplace Institute (IPSL). It has been devel-
oped for regional studies either within a GCM or in a stand-
alone mode. It is composed of (1) the previous LSM of the
Laboratoire de Météorologie Dynamique, SECHIBA, which
computes the physical processes at the interface between
soil, vegetation and atmosphere, the water fluxes in the soil
and the control of evaporation by soil moisture [Ducoudré
et al., 1993; de Rosnay and Polcher, 1998], (2) the carbon
cycle model of the Laboratoire des Sciences du Climat et de
l’Environnement, STOMATE, which simulates the bio-
chemical processes at the surface [Viovy, 1996], and (3) a
representation of the dynamical evolution of the vegetation
and the carbon budget derived from the LPJ (Lund-Potsdam-

Jena) model [Sitch, 2000]. The two last components of
ORCHIDEE are not used in this study.
[25] The vegetation distribution in ORCHIDEE is based

on the International Geosphere Biosphere Programme
(IGBP) land cover map [Belward et al., 1999]. The soil
hydrology consists of two moisture layers with the upper
one having a varying depth. The total soil depth is constant
at 2 m and the soil has a maximum water content per unit of
soil volume [de Rosnay and Polcher, 1998]. Runoff occurs
when the soil is saturated and it is the only runoff mecha-
nism in the model. A new development of the model is to
include a routing scheme, which uses a map of the world
basins built by combining the map built by Vörösmarty et al.
[2000] and the one built by Oki et al. [1999]. At each time
step, runoff and ‘‘drainage’’ fluxes are temporarily stored in
three reservoirs which have different residence time con-
stants (Figure 1). The water is progressively routed to the
oceans, following the main slopes and taking into account
the tortuous path of the river channels, through a cascade of
linear reservoirs.
[26] The representation of vertical and horizontal water

fluxes in the same model allow us to simulate the impact of
floodplains and irrigation on the continental water cycle and
to represent endorheic basins which are not connected to
oceans by rivers. The water carried by rivers in endorheic
basins will return to the soil moisture reservoir at the point
of convergence. The floodplains outside of the high lati-
tudes are treated by a simple parameterization which dis-
perses the flood wave and returns waters to the soil
moisture. This process is only activated in regions identified
as wetlands in the vegetation map. The parameterization of
the irrigation is described by de Rosnay et al. [2003].

3.2. Experimental Design

[27] In sections 4 and 5, we analyze the outputs of
ORCHIDEE LSM forced by different meteorological data
to validate our new NCC data. In the NCC data construction
process, we have obtained several atmospheric forcing data
sets for 53 years from 1948 to 2000 as described in Table 2.
Each forcing data set contains eight variables (see Table 1)
which may either be the pure reanalysis products (NCEP),
the reanalysis corrected by CRU data (CRU) or the reanal-
ysis corrected by the SRB data.
[28] These data sets are used to force the ORCHIDEE

LSM, and the model output obtained with these respective
data sets will also be called NCEP, NPRE, NCRU and NCC.
In section 5, the GSWP2 forcing data are also used for an
ORCHIDEE simulation and the obtained output for the
period 1986–1995 will be called GSPW2.

4. Validation of NCC and ORCHIDEE LSM

[29] As most variables describing the state of the surface
are not directly observable, to assess the quality of

Figure 1. Principle of the river routing scheme.

Table 2. Description of the Atmospheric Forcing Data Sets Constructed to Evaluate the Added Value of NCCa

Forcing data sets Rainf Snowf Tair Qair Psurf SWdown LWdown Wind

NCEP NCEP NCEP NCEP NCEP NCEP NCEP NCEP NCEP
NPRE CRU CRU NCEP NCEP NCEP NCEP NCEP NCEP
NCRU CRU CRU CRU CRU CRU NCEP NCEP NCEP
NCC CRU CRU CRU CRU CRU SRB SRB NCEP

aNCEP, pure reanalysis products; CRU, reanalysis corrected by CRU data; and SRB, reanalysis corrected by SRB data.
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ORCHIDEE LSM, we take advantage of the integrated
routing scheme which allows us to compare the simulated
and the observed river discharge over the largest river
basins. River discharge is an appropriate observable mea-

sure to validate the large-scale water balance. The river
discharge measurements used here are the data set provided
by the Global Runoff Data Center (GRDC) (http://
www.grdc.sr.unh.edu/) and the data set provided by UCAR

Figure 2. Discharge from 1970 to 1997 simulated by NCEP, NPRE, NCRU, and NCC experiments
compared to the observed river discharge at Obidos, Amazon: (a) mean seasonal signal and (b) anomaly
signal. Because of the similarity of the NPRE, NCRU, and NCC anomaly curves, different thicknesses
are used to distinguish them. Units are in m3/s.
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(http://dss.ucar.edu/data sets/ds552.1/). The last data set
contains monthly river discharge rates for 4425 locations
around the world except for the former Soviet Union. This
data set has certain observations which do not exist in the
GRDC data, for example, the discharge measurements at the
station Timbues of Paraná, the measurements from 1983 to
1997 at the station Vicksburg of Mississippi, etc. In this
study, the GRDC data were used for the stations in the
former Soviet Union. When the simulated river discharges
and the observations are compared, only the period overlap
is used to compute statistics.

4.1. The Amazon Basin, a Test Case

[30] The objective of the present section is to show the
importance of data correction as well as to prove the quality

of NCC data set over the Amazon basin, which is the
world’s largest basin with a total area of 6.14 � 106 km2.
[31] The result obtained over the Amazon basin is illus-

trated in Figure 2. Figure 2 represents the mean seasonal
(Figure 2a) and the anomaly signals (Figure 2b) of the river
discharge observed and simulated at the station Obidos of
the Amazon (1.95�S, 55.51�W) from 1970 to 1997.
Figure 2a shows that the mean seasonal discharge simulated
by NCEP experiment (black dotted curve) is lower than the
observations (red curve) and reflects well the error in the
precipitation of the reanalysis. After correcting the precipi-
tation (NPRE experiment, green curve), the simulated river
discharge gives more satisfactory results. Figure 2b shows
that NPRE experiment describes well the interannual signal
from 1970 to 1990 and even better in the 1990s.

Figure 3. Taylor diagram illustrating the statistics of Amazon river discharge at Obidos simulated by
NCEP, NPRE, NCRU, and NCC experiments compared against the observations from 1970 to 1997 for
(a) full series, (b) mean seasonal signal, and (c) anomaly.
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[32] The correction of temperature (NCRU experiment,
brown curve) changes slightly the Amazon discharge (max-
imum 1.5% in amplitude). This correction becomes more
important in the regions of high latitude (about 25% in
amplitude and 1 month of phase shift over the Lena basin
(see section 5). The additional correction of radiation (NCC
experiment, blue curve) increases the amplitude of the
simulated discharge and provides NCC discharge a more
realistic amplitude (Figure 2a). However, we should note
that the high flow in the mean seasonal signal is too soon
with a phase shift of about 1 month in the simulations. The
temperature and radiation corrections have a very little
effect on the anomaly signal (Figure 2b).

Table 3. The 10 Stations Closest to the Ocean of the World’s

10 Largest Riversa

No Station River Longitude Latitude Period

1 Obidos Amazon �55.51 �1.94 1970–1997
2 Kinshasa Congo 15.30 �4.30 1950–1982
3 Puente Angostura Orinoco �63.60 8.15 1950–1989
4 Datong Changjiang 117.62 30.77 1950–1988
5 Bahadurabad Brahmaputra 89.67 25.18 1973–1975
6 Vicksburg Mississippi �90.90 32.31 1950–1997
7 Igarka Yenisey 86.50 67.48 1950–1983
8 Timbues Paraná �60.71 �32.67 1950–1993
9 Kusur Lena 127.65 70.70 1950–1983
10 Pakse Mekong 105.80 15.12 1982–1984

aArranged by the estimated river discharge. Period indicates the years
within 1948–2000 where we have a continuously observed discharge.

Figure 4. Taylor diagram illustrating the statistics of 10 largest rivers discharges simulated by NCEP,
NPRE, NCRU, and NCC experiments compared against the observations for the whole common
(observation and simulation) period. Note the different axis scales between the plot that represents two
stations Kinsasha and Timbues and the two other plots.
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[33] To provide a more condensed view of these results,
Figure 3a displays a Taylor diagram [Taylor, 2001], which
shows the error in the simulated discharge for the full time
series. This error is then decomposed into the part present in
the mean annual cycle and the part associated to the
interannual variations and displayed using two other Taylor
diagrams (Figures 3b and 3c). The Taylor diagrams provide
the ratio of standard deviation as a radial distance and the
correlation with observations as an angle in the polar plot
for all four simulations. Consequently, the observed behav-
ior of the Amazon’s discharge at Obidos is represented by a
point on the horizontal axis (zero correlation error) and at
unit distance from the origin (no error in standard devia-
tion). In this coordinate system, the linear distance between
each experiment’s point and the ‘‘observed’’ point is pro-
portional to the root mean square model error. Figure 3a is a
discharge comparison for the entire period 1970–1997 for

which observations are available. It shows the qualities of
the river discharges simulated by the 4 experiments. NCEP
discharge is far from the observations, its simulated variance
is underestimated at 50% of observed and its correlation
with observations is only of 0.4. NPRE and NCRU are
better simulations and very similar because of the small
effect of temperature correction. The NCC simulation has
the best simulated discharge. It closely matches the ob-
served magnitude of variance and exhibit a correlation of
about 0.9 with the observations.
[34] Figures 3b and 3c illustrate the statistics of the mean

seasonal signal and the anomaly of the simulated Amazon
discharge compared against the observations, respectively.
They strengthen the results from Figure 3a: over the
Amazon, the quality of simulated discharge depends prin-
cipally on the quality of precipitation input; and the tem-
perature correction has little effect on the simulated

Figure 5. Same as Figure 4 but for mean seasonal signal.
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discharge. For the mean seasonal signal, the NCC simula-
tion shows the best amplitude but its correlation with the
observations (about 0.9) is slightly smaller than the ones for
NPRE and NCRU (about 0.95). In Figure 3c, the correlation
is not as good as in Figures 3a and 3b (about 0.7 for the
three experiments NPRE, NCRU, and NCC) and the vari-
ance is too strong and points to problems in the simulated
interannual variability which will be discussed later.

4.2. The 10 Largest Rivers

[35] The objective of this section is to show the
improvement of 53-year forcing data set after each step
of data correction over the world’s 10 largest rivers (by
the estimated river mouth flow rate). Table 3 presents the
10 stations closest to the mouth of these rivers and the
period in common for the observations and the numerical
experiments. For most of these rivers a station could be

found with a long enough record to provide a meaningful
evaluation. Notable exceptions are the Brahmaputra and
the Mekong. This choice of basins and stations is biased
toward the tropical basins which is favorable to our
model as the treatment of soil and river freezing is still
simplistic and an evaluation of the atmospheric forcing in
the high latitudes with ORCHIDEE would not be very
meaningful. Over the Congo basin, there are two dis-
charge stations at nearly the same location, Kinshasa and
Brazzaville. Kinshasa provides continuously observations
from 1903 to 1983 while for Brazzaville only the period
1971 to 1989 is available. During their common period
(1970–1983) the recorded discharges show discrepancies
of about 6%. In this section, the discharge measured at
Kinshasa station from 1950 to 1983 are used because of
the longer common period with NCC. Later, in the
comparison with GSWP2 the observations from Brazza-

Figure 6. Same as Figure 4 but for anomaly signal.
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ville are used because the overlap for the 1986–1996
period is larger.
[36] Figures 4, 5, and 6 illustrate the statistics of the

simulated world’s 10 largest river discharges compared to
the observations for the whole observed period, the mean
seasonal signal, and the anomaly signal, respectively. For
almost all the basins, Figure 4 shows very clearly that the
data have better quality after each correction. The simu-
lated discharges of the Amazon, Changjiang, and Brah-
maputra are quite realistic; their correlations with the
observations vary from 0.9 to 0.95 and their normalized
standard deviations are very close to 1. For all basins,
discharges obtained for NPRE show a great improvement
compared to the NCEP experiment, which illustrates that
precipitation biases input are the main reason of nonre-
alistic simulated discharges.
[37] The temperature correction (NCRU) has a small

effect on the river discharge at low and middle latitudes.
At high latitudes (see Yenisey and Lena basin), temperature
correction becomes more important because change in
temperature will also affect the precipitation input (partition
between rain and snow), which consequently changes the
processes at the surface.
[38] The radiation correction (NCC) improves the forcing

quality, especially in term of discharge amplitude. This
correction has nearly no effect in term of phase as only a
bias correction was performed in the reanalysis products.
[39] For the Kinshasa station (Congo basin), the simulated

discharges is practically uncorrelated with the observations
for all experiments. As discussed by Oki et al. [1999], the
low rain gauge density [New et al., 2000] leads to poor
precipitation estimates over the basin which in turn degrades

considerably the simulated discharge. If one can use
ORCHIDEE as an indirect evaluator of precipitation clima-
tologies, one would have to conclude that the annual cycle
of precipitation is better represented in the reanalysis than
by the estimation based on rain gauges. However, before
one would reach such a conclusion ORCHIDEE will need
to be more thoroughly evaluated, especially the parameter-
ization of floodplains, as they play an important role in the
Congo basin.
[40] Except for poor forcing precipitation, this bias may

also be explained by the fact that ORCHIDEE does not
properly represent the natural dissipation of water from river
channels to surrounding land, water used by the cities,
irrigation and dam constructions.
[41] Figure 5 shows that there is a small variance ratio

and a weak correlation in the mean seasonal cycle of the
simulated discharge at Timbues (Paraná basin). The main
cause of this deficiency is the existence of floodplains over
the Paraná basin (see Figure 7) which flatten the annual
cycle and which are very difficult to represent in a coarse
land surface model. The inclusion of a representation of
floodplains in the ORCHIDEE LSM improves the ampli-
tude of simulated Paraná river discharge; however, large
discrepancies with seasonal variations remain.
[42] In Figure 4 one may note that except for the Congo

and Paraná, the simulated discharges tend to be lower than
the observations. Too high temperature, too strong wind, too
high incoming solar radiation, too low humidity in the
forcing data or inadequate land surface parameters could
be the causes of discharge underestimates. Among them,
Oki et al. [1999] have considered two causes. The first one
is related to the disaggregation into 6 hourly of the CRU

Figure 7. Mean seasonal signals observed, simulated by NCC experiment with and without floodplains
at Timbues station, Paraná. Units are in m3/s.
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monthly precipitation. The precipitation intensity is weaker
and more continuous than reality so that the simulated
evapotranspiration from intercepted water should be larger
than reality and result in too low runoff. As a consequence
discharges simulated by ORCHIDEE LSM should be lower
than observed. Another cause of the underestimation could
be due to the observational problems of rain gauges. Gauge
measurements that tend to underestimate the true precipita-
tion because of strong wind will reduce the capture ratio of a
rain gauge. This effect is especially significant for snow
precipitation (see the simulated discharges of Yenisey and
Lena).
[43] In the mean seasonal signal (Figure 5), except for

the Congo and Paraná, the correlations of simulated and
observed discharges vary between 0.8 and 0.99, which are

quite satisfactory. On the other hand, for the interannual
variances of simulated discharges the correlation is always
lower than 0.8, although the amplitudes are well repre-
sented. This result could very well point to limitations in
the routing scheme of ORCHIDEE as the three-reservoir
approach might be unable to represent properly fluctua-
tions over longer timescales. As the quality of the observed
discharge over long time periods is not know, the severity
of the model’s deficiency cannot be evaluated.

5. Comparison Between NCC and GSWP2

[44] In section 4, we have shown that each step of
correction makes the 53-year forcing data better. The NCC
forcing allows us to simulate realistically the discharge of

Figure 8. Taylor diagram illustrating the statistics of discharges simulated using GSWP2 and NCC
compared to observations for (a) full series, (b) mean seasonal signal, and (c) anomaly.
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the world’s largest rivers. This section is a comparison
between the new NCC data and the atmospheric forcing
data set of GSWP2 over the common period 1986–1995.
Figure 8 shows Taylor diagrams which compare the dis-
charges (Figure 8a), the mean seasonal cycle (Figure 8b) and
the interannual anomalies (Figure 8c) for 6 of the 10 largest
rivers of the world simulated to observations for
ORCHIDEE forced by GSWP2 and NCC (see Table 4).
Four rivers were left out here because of the lack of
discharge observations during 1986–1995 period. Over
the Congo basin, the discharge measured at Brazzaville
was used because Kinshasa only provides the observations
until 1983 (Brazzaville provides the data from 1971 to
1989).
[45] Figure 8a shows that the discharges for Brazzaville

(Congo) and Timbues (Paraná) simulated with GSWP2 and
NCC are far from the observations. The reasons have been
discussed in section 4. The discharges at Obidos (Amazon)
and Datong (Changjiang) are slightly better in NCC than in
GSWP2. For the Orinoco and Mississippi, discharges sim-
ulated with NCC are better than those obtained with the
GSWP2 forcing. Figures 8b and 8c confirm the better
quality of NCC discharges compared to GSWP2, especially
for the interannual variability (Figure 8c) where NCC
provides a better simulation.
[46] At the stage of this study, we are unable to under-

stand why the simulated river flows with NCC data seem in
better agreement with observations than GSWP2. The fact
that the precipitation data are not the same and are used with
different time step (3-hourly and 6-hourly for GSWP2 and
NCC, respectively) are probably the causes of these differ-
ences. This question would deserve another careful study in
the near future.
[47] For the period in common, the results of ORCHIDEE

forced by GSWP2 and NCC are similar with a small
advantage for the longer forcing data set. The fact that for
the construction of GSWP2 better observations were avail-
able and used gives us some confidence that NCC is reliable
forcing data set for the period 1948 to 2000.

6. Conclusions

[48] This study was aimed at constructing a 53-year
forcing data set for land surface models. We have used
NCEP/NCAR reanalysis and have corrected them with a
number of independent in situ observations. The resulting
data set, called NCC, has been used as input for the
ORCHIDEE LSM and the simulated river discharges were
used to validate the simulations.
[49] It was shown that, by far, the correction of precipi-

tation, with the observations collected by the CRU, gives

the most important improvement in river discharge. How-
ever, the temperature and net radiation corrections also
provide improvements which are not negligible. When the
simulated river discharges are compared with the ones
obtained using the GSWP2 forcing data set, for the same
period, the similar discharges produced by ORCHIDEE
gives some confidence that the 53-year forcing is reliable.
It will be certainly very interesting to confirm these results
with other simulations performed using different land sur-
face models.
[50] The NCC data is an important step for understanding

of the continental water cycle evolution over the last half
century. It will allows us to validate the ability of our land
surface models to respond to the interannual variability of
the atmospheric forcing. A progressively increasing confi-
dence in the output of our LSMs will enable the community
to provide for instance oceanographers with estimates of
the freshwater input into the oceans and its variability
and trends. The simulated surface processes over the last
53 years will also allow us to refine studies of the impact
of climate change on water such as the one proposed by
Milly et al. [2002].
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6 Timbues Paraná �60.71 �32.67 1986–1993

aSee Figure 8.

D06116 NGO-DUC ET AL.: A 53-YEAR FORCING DATA SET FOR LSMS

12 of 13

D06116



dynamic global vegetation model for studies of the coupled atmo-
sphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015,
doi:10.1029/2003GB002199.

Maurer, E., A. Wood, J. Adam, D. Lettenmaier, and B. Nijssen (2002), A
long-term hydrologically-based data set of land surface fluxes and states
for the conterminous United States, J. Clim., 15, 3237–3251.

Meeson, B. W., F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W.
Closs, K. J. Sun, D. J. Sunday, and P. Sellers (1995), ISLSCP Initiative I:
Global data sets for land-atmosphere models, 1987–1988 [CD-ROM],
NASA, Greenbelt, Md.

Milly, P., R. Wetherald, K. Dunne, and T. Delworth (2002), Increasing risk
of great floods in a changing climate, Nature, 415, 514–517.

New, M., M. Hulme, and P. Jones (1999), Representing twentieth-century
space-time climate variability. Part I: Development of a 1961–90 mean
monthly terrestrial climatology, J. Clim., 12, 829–856.

New, M., M. Hulme, and P. Jones (2000), Representing twentieth-century
space-time climate variability. Part II: Development of a 1901–90
mean monthly grids of terrestrial surface climate, J. Clim., 13,
2217–2238.

Oki, T., T. Nishimura, and P. Dirmeyer (1999), Assessment of annual runoff
from land surface models using total runoff integrating pathways (TRIP),
J. Meteorol. Soc. Jpn., 77, 235–255.

Piper, S. C., and E. F. Stewart (1996), A gridded global data set of daily
temperature and precipitation for terrestrial biosphere modeling, Global
Biogeochem. Cycles, 10, 757–782.

Shepard, D. (1968), A two-dimensional interpolation function for irregu-
larly-spaced data, Proc. Natl. Conf. ACM, 23rd, 517–524.

Sitch, S. (2000), The role of vegetation dynamics in the control of atmo-
spheric CO2 content, Ph.D. thesis, 213 pp., Univ. of Lund, Lund,
Sweden.

Taylor, K. E. (2001), Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res., 106, 7183–7192.

Verant, S., K. Laval, J. Polcher, and M. Castro (2004), Sensitivity of the
continental hydrological cycle to the spatial resolution over the Iberian
Peninsula, J. Hydrometeorol., 5, 265–283.

Viovy, N. (1996), Interannuality and CO2 sensitivity of the SECHIBA-BG
coupled SVAT-BGC Model, Phys. Chem. Earth, 21, 489–497.
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